skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Agrell, Erik"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Traffic demands in future elastic optical networks are expected to be heterogeneous with time-varying bandwidth. Estimating the physical-layer impairments (PLIs) for random bandwidth demands is important for cross-layer network resource provisioning. State-of-the-art PLI estimation techniques yield conservative PLI estimates using the maximum bandwidth, which leads to significant over-provisioning. This paper uses probabilistic information on random bandwidth demands to provide a computationally efficient, accurate, and flexible PLI estimate. The proposed model is consistent with the needs of future self-configuring fiber-optic networks and maximally avoids up to a 25% overestimation of PLIs compared to the benchmark for the cases studied, thus reducing the network design margin at a negligible extra computational cost. 
    more » « less
  2. Flexible grid networks need rigorous resource planning to avoid network over-dimensioning and resource over-provisioning. The network must provision the hardware and spectrum resources statically, even for dynamic random bandwidth demands, due to the infrastructure of flexible grid networks, hardware limitations, and reconfiguration speed of the control plane. We propose a flexible online–offline probabilistic (FOOP) algorithm for the static spectrum assignment of random bandwidth demands. The FOOP algorithm considers the probabilistic nature of random bandwidth demands and balances hardware and control plane pressures with spectrum assignment efficiency. The FOOP algorithm uses the probabilistic spectrum Gaussian noise (PSGN) model to estimate the physical-layer impairment (PLI) for random bandwidth traffic. Compared to a benchmark spectrum assignment algorithm and a widely applied PLI estimation model, the proposed FOOP algorithm using the PSGN model saves up to 49% of network resources. 
    more » « less